EAMCET MODEL PAPER ENGINEERING

No. of Questions: 160

Maximum Marks: 160

Time: 3 hours

MATHEMATICS

1 If A = $\{1, 2, 3\}$ and B = $\{1, 2, 3, 4, 5\}$ then the number of onto functions that can be defined from A to B is 1) 0 2) 48 3) 36 4) 81 The range of $f(x) = \frac{1}{3 - \cos 4x}$ is 2. 1) $\left|\frac{1}{4}, \frac{1}{2}\right|$ $2\left(\frac{1}{4},\frac{1}{3}\right)$ 3) [-2, 2] 4) [0,∞) If the graph of the function y = f(x) is symmetrical about the line x = 2 then 3. 1) f(x) = f(-x)2) f(2 + x) = f(2 - x)4) f(x) = -f(-x)3) f(x + 2) = f(x -4. The value of the sum in the nth bracket of (1) + (2 + 3) + (4 + 5 + 6 + 7) + (8 + 9 + 10 +15) +15..... (n > 1) is 1) 2n(2n + 2n - 1 - 1)2) 2n-1(2n + 2n-1 - 1)3) 2n-2(2n + 2n-1 - 1)4) 2n(2n + 2n-1)The sum of the series $\frac{1}{\sin 45^\circ \sin 46^\circ} + \frac{1}{\sin 47^\circ \sin 48^\circ} + \dots +$ 5. sin 133° sin 134° is cosec n° then n =2) 3 3) 10 1)24) 1 If $\frac{\cos x}{\cos(x-2y)} = \lambda$, then $\frac{1-\lambda}{1+\lambda} \cot y =$ 6. 1) $\tan(x - 2y)$ 2) tan (x + 2y)3) tan (x - y)4) tan (x + y) $\cot 16^{\circ} \cot 44^{\circ} + \cot 44^{\circ} \cot 76^{\circ} - \cot 76^{\circ} \cot 16^{\circ} =$ 7. 1)03) 3 4) 4 If tan ax - tan bx = 0, $a \neq b$ then the solutions of 'x' form a 8. 1) H.P. 2) G.P. 3) A.P. 4) A.G.P. The value of \sin^{-1} (sin 10) is 9. 1) 10 2) $10 - 3\pi$ 3) $3\pi - 10$ 4) $2\pi - 10$ If $x = \log \left[tan \left(\frac{\pi}{4} + \frac{\theta}{2} \right) \right]$ then cos hx =10. 1) sin θ 2) $\cos \theta$ 3) sec θ 4) cosec θ

R-24,25,26,27-4-17

11.	In $\triangle ABC$, if $2r_1 = 3r_2 = r_3$, then $a : b : c =$				
	1) 4 : 3 : 5	2) 3 : 4 : 5	3) 5 : 3 : 4	4) 3 : 5 : 4	
12.	In $\triangle ABC$ if A is right an	ngle, then $\cos^{-1}\left[\frac{R}{r_2 + r_3}\right]$	is	X	
	1) 30°	2) 60°	3) 90°	4) 45°	
13.	A 20 mt long tree is brok point where the tree is b	ten by wind and the top st roken is	truck the ground at an angl	e of 30°. The height of the	
	1) $\frac{10}{3}$ mt	2) $\frac{20}{3}$ mt	3) $\frac{16}{3}$ mt	4) 7 mt	
14.	If $z_k = \cos\left(\frac{k\pi}{10}\right) + i \sin \theta$	$\left(\frac{k\pi}{10}\right)$, Then $z_1 z_2 z_3 z_4$	=		
	1) –1	2) 1	3) -2	4) 2	
15.	If $ z + 4 \le 3$ then the m	maximum value of $ z + 1 $	is		
	1) 6	2) 0	3) 4	4) 10	
16.	If $(\sqrt{3} + i)^{100} = 2^{99}$ (a)	+ ib) then b =			
	1) 1	$(2)\sqrt{3}$	3) $\sqrt{2}$	4) 2	
17.	$(\mathbf{a}.\ \overline{i})^2 + (\overline{\mathbf{a}}.\overline{j})^2 + (\overline{\mathbf{a}}$	$(\overline{k})^2 =$			
	1) a ⁻²	2) 2a ⁻²	3) 3a ⁻²	4) 4a ⁻²	
18.	If $ \overline{\mathbf{a}} = 3$, $ \overline{\mathbf{b}} = 4$, $ \overline{\mathbf{a}} = 4$	$\overline{\mathbf{b}} = 5$, then $ \overline{\mathbf{a}} + \overline{\mathbf{b}} =$		Ň	
~	1) 6	2) 5	3) 4	4) 3	
19.	ABC is an equilateral tri	iangle of side 'a'.		2 × 2	
	Then $\overline{AB} \cdot \overline{BC} + \overline{BC} \cdot \overline{C}$	$\overline{CA} + \overline{CA} \cdot \overline{AB} =$	20	0.	
	$1) - \frac{a^2}{2}$	2) – a^2	3) $-\frac{3a^2}{2}$	4) $-2a^2$	
20.	Observe the following st	tatements and choose the	correct answer:		
	Assertion (A): Vector e	quation of the plane passi	ng through the point $(1, -2)$	2, -3) and parallel to the	
	Vectors (2, -1, 3), (2, 3,	-6) is $\overline{\mathbf{r}} = (\overline{i} - 2\overline{j} - 3\overline{k})$	$+ \alpha \left(2\overline{i} - \overline{j} + 3\overline{k}\right) + \beta \left(2\overline{i}\right)$	$\overline{i} + 3\overline{j} - 6\overline{k}$ $\alpha, \beta \in \mathbb{R}$.	
	Reason (R): Vector equation of plane through the point A (\overline{a}) and parallel to the vectors \overline{b} , \overline{c} is $\overline{r} = \overline{a} + \alpha \overline{b} + \beta \overline{c}$ where $\alpha, \beta \in \mathbb{R}$				
	1) A is true, R is false	2.			
	2) A is false, R is true				
	3) A, R are true and $R =$	⇒ A			
	4) A, R are true but $R \neq 4$	> A			
21.	If \overline{a} , \overline{b} , \overline{c} are unit vector	rs then $\left \overline{a} - \overline{b}\right ^2 + \left \overline{b} - \overline{b}\right ^2$	$\overline{c} \Big ^2 + \Big \overline{c} - \overline{a} \Big ^2$ does not	ot exceed	
<	1) 4	2) 8	3) 6	4) 9	
22.	If the quadratic equation	$ax^2 + 2cx + b = 0$ and ax	$x^2 + 2bx + c = 0 (b \neq c) ha$	ave a common root, then	
	a + 4b + 4c =				
	1) 0	2) 1	3) –1	4) 2	

23.	The roots of the equation $a (b - c) x^2 + b (c - a) x + c (a - b) = 0$ are				
	1) $\frac{c(a-b)}{a(b-c)}$, $\frac{b(c-a)}{c(a-b)}$		2) $\frac{b(c-a)}{c(a-b)}$, 1		
	3) 1, $\frac{c(a-b)}{a(b-c)}$		4) $\frac{c(a-b)}{b(c-a)}$, 1	ex	
24.	To remove 2^{nd} term in f then h =	$f(x) = x^4 + 8x^3 + x - 5 =$	0, we have to translate th	the equation to $f(x + h) = 0$	
	1) 1	2) 2	3) -2	4) -1	
25.	The equation of lowest of	legree with rational coeff	icients having a root $\sqrt{3}$ +	$\sqrt{2}$ is	
	1) $x^4 + 10x^2 - 1 = 0$		2) $x^4 - 10x^2 + 1 = 0$		
	3) $x^4 + 10x^2 + 1 = 0$		4) $x^4 - 10x^2 - 1 = 0$		
	$x + \lambda x$	x	0		
26.	If $f(\mathbf{x}) = \begin{vmatrix} \mathbf{x} & \mathbf{x} + \lambda \\ \mathbf{x} & \mathbf{x} \end{vmatrix}$	$\begin{array}{ c c c c c } x & \text{then } f(3x) - f(x) \\ x + \lambda \end{array}$	is equal to		
	1) $3x\lambda^2$	2) $6x\lambda^2$	3) xλ ²	4) $5x\lambda^2$	
	$\cos x \sin x = 0$				
27.	If $A = -\sin x \cos x$	$f(x)$ = $f(x)$, then A^{-1} =			
	0 0 1				
	1) f(-x)	$2)f(\mathbf{x})$	3) $-f(x)$	4) $-f(-x)$	
28.	The number of solutions	s of the system $x - y + z$	= 0, x + 2y - z = 0, 2x + y	y + 3z = 0 is	
	1) 1	2) 2	3) 3	4) Infinite	
29.	The number of four lett	er words that can be forr	ned using the letters of th	e word MIXTURE which	
	contains the letter X is				
	1) 120	2) 360	3) 480	4) 240	
30.	There are '10' points in a	plane of which no three p	oints are collinear and fou	r points are concyclic. The	
	number of different circles that can be drawn through at least 3 points is				
	1) 117	2) 116	3) 115	4) 120	
31.	1) 117 The number of difference rearranging its digits so	2) 116 ent nine digit numbers that the odd digits occupy	3) 115 can be formed from the v even position is	4) 120 e number 223355888 by	
31.	 1) 117 The number of difference rearranging its digits so 1) 16 	2) 116ent nine digit numbersthat the odd digits occupy2) 36	3) 115 can be formed from the v even position is 3) 60	 4) 120 e number 223355888 by 4) 180 	
31. 32.	1) 117 The number of difference rearranging its digits so 1) 16 ${}^{15}C_0$. ${}^{5}C_5 + {}^{15}C_1$. ${}^{5}C_4$ 4	2) 116 ent nine digit numbers that the odd digits occupy 2) 36 $^{15}C_2$. $^{5}C_3 + {}^{15}C_3$. $^{5}C_2$	3) 115 can be formed from the veven position is 3) 60 $+ {}^{15}C_4 .{}^{5}C_1 =$	 4) 120 number 223355888 by 4) 180 	
31. 32.	1) 117 The number of difference rearranging its digits so 1) 16 ${}^{15}C_0. {}^{5}C_5 + {}^{15}C_1. {}^{5}C_4 + {}^{1}$ 1) 20 ²⁰ , - 2 ⁵	2) 116 ent nine digit numbers that the odd digits occupy 2) 36 $^{15}C_2$. $^{5}C_3 + {}^{15}C_3$. $^{5}C_2$ 2) $\frac{20!}{5!15!}$	3) 115 can be formed from the veven position is 3) 60 + ${}^{15}C_4 . {}^{5}C_1 =$ 3) $\frac{20!}{5!!5!} - 1$	 4) 120 number 223355888 by 4) 180 4) 20!/(5!15!) - 15!/(5!10!) 	
31.32.33.	1) 117 The number of difference rearranging its digits so 1) 16 ${}^{15}C_0$. ${}^{5}C_5 + {}^{15}C_1$. ${}^{5}C_4 + {}^{1}$ 1) 20 ²⁰ , - 2 ⁵ Coefficient of x ¹⁶ in (x ²)	2) 116 ent nine digit numbers that the odd digits occupy 2) 36 $^{15}C_2$. $^{5}C_3 + {}^{15}C_3$. $^{5}C_2$ 2) $\frac{20!}{5!15!}$ $^{2}+1)(x^2+4)(x^2+9)$	3) 115 (a) be formed from the veven position is 3) 60 + ${}^{15}C_4 . {}^{5}C_1 =$ 3) $\frac{20!}{5!!5!} - 1$.(x ² + 81) is	 4) 120 e number 223355888 by 4) 180 4) 20!/(5!15!) - 15!/(5!10!) 	
31.32.33.	1) 117 The number of difference rearranging its digits so 1) 16 ${}^{15}C_0. {}^{5}C_5 + {}^{15}C_1. {}^{5}C_4 + {}^{1}$ 1) 20 ²⁰ , - 2 ⁵ Coefficient of x ¹⁶ in (x ²) 1) -385	2) 116 ent nine digit numbers that the odd digits occupy 2) 36 $^{15}C_2. {}^{5}C_3 + {}^{15}C_3. {}^{5}C_2$ 2) $\frac{20!}{5!15!}$ 2 + 1)(x ² + 4)(x ² + 9) 2) 385	3) 115 (a) be formed from the veven position is 3) 60 + ${}^{15}C_4 . {}^{5}C_1 =$ 3) $\frac{20!}{5!!5!} - 1$.(x ² + 81) is 3) 285	 4) 120 number 223355888 by 4) 180 4) 20!/(5!15!) - 15!/(5!10!) 4) -285 	
31.32.33.34.	1) 117 The number of difference rearranging its digits so 1) 16 ${}^{15}C_0$. ${}^{5}C_5 + {}^{15}C_1$. ${}^{5}C_4 + {}^{1}$ 1) 20 ²⁰ , - 2 ⁵ Coefficient of x ¹⁶ in (x ²) 1) -385 The integer just less that	2) 116 ent nine digit numbers that the odd digits occupy 2) 36 $^{15}C_2$. $^{5}C_3 + {}^{15}C_3$. $^{5}C_2$ 2) $\frac{20!}{5!15!}$ $^{2}+1)(x^2+4)(x^2+9)$ 2) 385 $n(\sqrt{2}+1)^6 =$	3) 115 (a) be formed from the veven position is 3) 60 + ${}^{15}C_4 . {}^{5}C_1 =$ 3) $\frac{20!}{5!!5!} - 1$.(x ² + 81) is 3) 285	 4) 120 number 223355888 by 4) 180 4) 20! / 5!15! - 15! / 5!10! 4) -285 	
31.32.33.34.	1) 117 The number of difference rearranging its digits so 1) 16 ${}^{15}C_0$. ${}^{5}C_5 + {}^{15}C_1$. ${}^{5}C_4 + {}^{1}$ 1) 20 ²⁰ , - 2 ⁵ Coefficient of x ¹⁶ in (x ²) 1) -385 The integer just less that 1) 196	2) 116 ent nine digit numbers that the odd digits occupy 2) 36 ${}^{15}C_2 \cdot {}^{5}C_3 + {}^{15}C_3 \cdot {}^{5}C_2$ 2) $\frac{20!}{5!15!}$ 2+ 1)(x ² + 4)(x ² + 9) 2) 385 n $(\sqrt{2} + 1)^6 =$ 2) 197	3) 115 (a) be formed from the veven position is 3) 60 + ${}^{15}C_4 .{}^{5}C_1 =$ 3) $\frac{20!}{5!15!} - 1$.(x ² + 81) is 3) 285 3) 198	 4) 120 number 223355888 by 4) 180 4) 20! / 5!15! - 15! / 5!10! 4) -285 4) 199 	
 31. 32. 33. 34. 35. 	1) 117 The number of difference rearranging its digits so 1) 16 ${}^{15}C_0$. ${}^{5}C_5 + {}^{15}C_1$. ${}^{5}C_4 + {}^{4}$ 1) 20 ²⁰ , - 2 ⁵ Coefficient of x ¹⁶ in (x ²) 1) -385 The integer just less that 1) 196 Number of diagonals in	2) 116 ent nine digit numbers that the odd digits occupy 2) 36 ${}^{15}C_{2} \cdot {}^{5}C_{3} + {}^{15}C_{3} \cdot {}^{5}C_{2}$ 2) $\frac{20!}{5!15!}$ 2+ 1)(x ² + 4)(x ² + 9) 2) 385 n $(\sqrt{2} + 1)^{6} =$ 2) 197 a pentagon	3) 115 (a) be formed from the veven position is 3) 60 + ${}^{15}C_4 . {}^{5}C_1 =$ 3) $\frac{20!}{5!15!} - 1$.(x ² + 81) is 3) 285 3) 198	 4) 120 number 223355888 by 4) 180 4) 20! / 5!15! - 15! / 5!10! 4) -285 4) 199 	
 31. 32. 33. 34. 35. 	1) 117 The number of difference rearranging its digits so 1) 16 ${}^{15}C_0$. ${}^{5}C_5 + {}^{15}C_1$. ${}^{5}C_4 + {}^{1}$ 1) 20^{20} , -2^5 Coefficient of x ¹⁶ in (x ²) 1) -385 The integer just less that 1) 196 Number of diagonals in 1) 5	2) 116 ent nine digit numbers that the odd digits occupy 2) 36 $^{15}C_{2} \cdot ^{5}C_{3} + ^{15}C_{3} \cdot ^{5}C_{2}$ 2) $\frac{20!}{5!15!}$ $^{2} + 1)(x^{2} + 4)(x^{2} + 9) \dots$ 2) 385 $n(\sqrt{2} + 1)^{6} =$ 2) 197 a pentagon 2) 4	3) 115 can be formed from the veven position is 3) 60 + ${}^{15}C_4 . {}^{5}C_1 =$ 3) $\frac{20!}{5!15!} - 1$.(x ² + 81) is 3) 285 3) 198 3) 10	 4) 120 number 223355888 by 4) 180 4) 20!/(5!15!) - 15!/(5!10!) 4) -285 4) 199 4) 35 	

36. The mean and S.D. of the marks of 200 candidates were found to be 40 and 15 respectively. Later, it was discovered that a score of 40 was wrongly read as 50. The correct mean and S.D. respectively are

1) 14.98, 39.95 2) 39.95, 14.98

3) 39.95, 224.5 4) None of these

37. Three houses are available in a locality. Three persons apply for the houses. Each applies for one house without consulting others. The probability that all the three apply for the same house is

3) $\frac{8}{2}$

2) $\frac{1}{9}$

38. In a class 60% are boys and the rest are girls. 50% of boys and 25% of girls know cricket. If a student is selected at random and given that the selected student is a cricketer. The probability that the selected student is a girl is

1)
$$\frac{1}{4}$$
 2) $\frac{1}{3}$ 3) $\frac{2}{3}$ 4) $\frac{3}{4}$

39. $\frac{1+3p}{3}, \frac{1-p}{4}, \frac{1-2p}{2}$ are the probability of three mutually exclusive events then the set of all

values of p is

1)

1) $\frac{2}{9}$

1)
$$\begin{bmatrix} \frac{1}{4}, \frac{1}{3} \end{bmatrix}$$
 2) $\begin{bmatrix} \frac{1}{4}, \frac{1}{2} \end{bmatrix}$ 3) $\begin{bmatrix} \frac{1}{3}, \frac{1}{2} \end{bmatrix}$ 4) $\begin{bmatrix} \frac{1}{4}, \frac{2}{3} \end{bmatrix}$

40. If the mean and the variance of a binomial variate X are 2 and 1 respectively, then the probability that X takes a value greater than 1 is equal to

3) $\frac{11}{16}$

4) $\frac{13}{16}$

$$\frac{3}{16}$$
 2) $\frac{5}{16}$

41. If a point $(x, y) = (\tan \theta + \sin \theta, \tan \theta - \sin \theta)$, then the locus of (x, y) is 1) $(yx^2)^{2/3} + (xy^2)^{2/3} = 1$ 3) $x^2 - y^2 = 12xy$ 4) $(x^2 - y^2)^2 = 16xy$

42. The point (4, 1) undergoes the following transformations successively

i) Reflection about the line y = x

ii) Translation through 4 units along the positive direction of X – axis.

iii) Rotation through an angle $\frac{\pi}{4}$ about the

origin in the clock wise direction. The final position of the point is

1)
$$\left(\frac{9}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$

2) $\left(\frac{9}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$
3) $\left(-\frac{9}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$
4) $\left(-\frac{9}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

43. The equation of the two sides of a square whose area is 25 sq. units are 3x - 4y = 0 and 4x + 3y = 0, the equations of the other two sides of the square are

1) $3x - 4y \pm 25 = 0$, $4x + 3y \pm 25 = 0$ 2) $3x - 4y \pm 5 = 0$, $4x + 3y \pm 5 = 0$ 3) $3x - 4y \pm 5 = 0$, $4x + 3y \pm 25 = 0$ 4) 3x - 4y = 0, 4x + 3y = 0

63.	If $\sqrt{\frac{v}{u}} + \sqrt{\frac{u}{v}} = 6$ then	$h \frac{dv}{du} =$		
	1) $\frac{17u - v}{u - 17v}$	2) $\frac{u - 17v}{17u - v}$	$3) \frac{17u + v}{u - 17v}$	$4) \frac{u+17v}{17u-v}$
64.	If $y = \tan^{-1} \left(\frac{1}{1 + x + x^2} \right)$	$+ \tan^{-1} \left(\frac{1}{x^2 + 3x + 3} \right)$	$+\tan^{-1}\left(\frac{1}{x^2+5x+7}\right)$	then y'(0) =
	$1) - \frac{3}{10}$	$2) - \frac{5}{10}$	$(3) - \frac{7}{10}$	$(4) - \frac{9}{10}$
65.	At $x = 0$, the equation to	the normal to the curve y	$y = (1 + x)^y + \sin^{-1} (\sin^2 y)$	x) is
	1) $x + y + 1 = 0$	2) $x + y - 1 = 0$	3) $x + y = 0$	4) $x - y + 1 = 0$
66.	If $a^2x^4 + b^2y^4 = c^6$, the	maximum value of xy is	2	
	1) $\frac{c^2}{$	2) $\frac{c^3}{c^3}$	3) $\frac{c^3}{$	4) $\frac{c^3}{$
	√ab	ab	√2ab	2ab
67.	The height of a cylinder	of the greatest possible vo	plume which can be inscri	bed in a sphere of radius R
	15 D	1/2	$2\sqrt{2}$	20
	1) $\frac{\kappa}{\sqrt{3}}$	2) $\frac{\sqrt{5}}{R}$	3) $\frac{2\sqrt{5}}{R}$	4) $\frac{2K}{\sqrt{3}}$
68	The equation of the com	mon tangent to the curves	$x^2 = 8x$ and $xy = -1$ is	• 5
00.	1) $3y = 9x + 2$	2) $\mathbf{v} = 2\mathbf{x} + 1$	3) $2v = x + 8$	4) $y = x + 2$
69	Tangents drawn from $P($	2) $y = 2x + 1$ (8) to the circle $x^2 + y^2$	-6x - 4y - 11 = 0 touch	the circle at A and B. The
K	equation of circumcircle	of triangle PAB is		
	1) $x^2 + y^2 - 2x + 6y - 2$	9 = 0	2) $x^2 + y^2 - 6x - 4y + $	19 = 0
	3) $x^2 + y^2 + 4x - 6y + 1$	9 = 0	4) $x^2 + y^2 - 4x - 10y + $	-19 = 0
	n		· 0·	
	$\int [x] dx$		X	
70.	Value of $\frac{0}{n}$ when	ere $[x]$ and $\{x\}$ are integrated as a set of the set	al and fractional parts of x	and $n \in N$, is equal to
	xb{x}			
	0	112		
	1) n	2) n 1	$3) - \frac{1}{2}$	$(1) \frac{1}{1}$
	1) 11	2) n - 1	$\frac{3}{n-1}$	4) <u>n</u>
71.	If $\int 1 + \tan(x - \alpha) \tan(x - \alpha)$	$(+ \alpha)dx = \lambda \log \left \frac{\cos \alpha}{\cos \alpha} \right $	$\frac{(x+\alpha)}{(x-\alpha)}$ + c then λ =	
	1) $\cot 2\alpha$	2) tan 2α	3) $-\cot 2\alpha$	4) – tan 2α
72.	If $\int \frac{e^{x} - e^{-x}}{e^{2x} + e^{-2x}} dx = A$	$\log_{e} \left \frac{e^{X} + e^{-X} + a}{e^{X} + e^{-X} - a} \right + c$	c, then (A, a) =	
	$1)\left(\frac{1}{2\sqrt{2}},\sqrt{2}\right)$		$2)\left(\frac{1}{2\sqrt{2}}, 2\sqrt{2}\right)$	
	$3)\left(\frac{1}{2\sqrt{2}},-2\sqrt{2}\right)$		$4)\left(\frac{1}{2\sqrt{2}},-\sqrt{2}\right)$	
	W	ww.eenadup	pratibha.net	

PHYSICS

81. When a wave traverses a medium the displacement of a particle located at 'x' at a time 't' is given by y = asin (bt - cx), where a, b, c are constants of the wave, which of the following is a quantity with dimensions

3) cx

1)
$$\frac{y}{a}$$
 2) bt

82. At time t = 0, two bodies A and B are at the same point. A moves with constant velocity V and B starts from rest and moves with constant acceleration along same direction. Relative velocity of B with respect to A when the bodies again meet each other is

4) $\frac{b}{c}$

4) $\frac{1}{2}$ m

- 1) 2V 2) $\frac{V}{2}$ 3) $\frac{V}{3}$ 4) V
- **83.** A block of mass m is pulled by a uniform chain of mass 'm' tied to it by applying a force 'F' at the other end of the chain. The tension at a point 'P' which is at a distance of quarter of the length of the chain from the free end, will be

1)
$$\frac{3F}{4}$$
 2) $\frac{7F}{8}$ 3) $\frac{6F}{7}$ 4) $\frac{4F}{5}$

84. A block of mass m is placed on a surface with a vertical cross-section given by $y = \frac{x^3}{6}$.

If the coefficient of friction is 0.5, the maximum height above the ground at which the block can be placed without slipping is

1)
$$\frac{1}{6}$$
 m 2) $\frac{2}{3}$ m 3) $\frac{1}{3}$ m

85. A coin is placed at the edge of a horizontal disc rotating about a vertical axis through its axis with a uniform angular speed 2 rad s⁻¹. The radius of the disc is 50 cm. The minimum coefficient of friction between disc and coin so that the coin does not slip

$$(g = 10 \text{ ms}^{-2})$$
 is
1) 0.1 2) 0.2 3) 0.3 4) 0.4

86. A pendulum consist of a wooden bob of mass (m) and length (l). A bullet of mass (m₁) is fired towards the pendulum with a speed v_1 . The bullet emerges out of the bob with a speed $\frac{v_1}{3}$, and the bob just complete the vertical circle. The value of v_1 is

1)
$$\left(\frac{\mathrm{m}}{\mathrm{m}_{1}}\right)\sqrt{5\mathrm{g}l}$$
 2) $\frac{\mathrm{m}}{\mathrm{m}_{1}}\sqrt{\frac{\mathrm{g}}{l}}$ 3) $\frac{2}{3}\left(\frac{\mathrm{m}}{\mathrm{m}_{1}}\right)\sqrt{5\mathrm{g}l}$ 4) $\frac{3}{2}\left(\frac{\mathrm{m}}{\mathrm{m}_{1}}\right)\sqrt{5\mathrm{g}l}$

87. A helicopter of power P can rise vertically upwards with a maximum uniform speed V. It can move horizontally with uniform speed V₁. If the air resistance is R times the velocity. The mass of the helicopter (in terms R, V, V₁ and g) is

1)
$$\frac{R[(V_1)^2 - V^2]}{gV}$$

2) $\frac{R[V^2 - (V_1)^2]}{gV}$
3) $\frac{R[V^2 + (V_1)^2]}{gV}$
4) $\frac{R(V_1 + V)}{g}$

88. Two balls are thrown simultaneously in air. The acceleration of centre of mass of the two balls while in air 1) depends on the direction of the motion of the balls 2) depends on the masses of the two balls 3) depends on the speeds of the two balls 4) is equal to g 89. A ball is projected with $20\sqrt{2}$ m/s at angle 45° with horizontal. The angular velocity of the particle at highest point of its journey about point of projection is 4) 0.4 rad/s 1) 0.1 rad/s2) 0.2 rad/s3) 0.3 rad/s90. Assertion (A): A wheel moving down a perfectly frictionless inclined plane will undergo slipping without rolling. Reason (R): For perfect rolling motion, work done against friction is zero. 1) Both (A) and (R) are true and (R) is the correct explanation of (A) 2) Both (A) and (R) are true and (R) is not the correct explanation of (A) 3) (A) is true but (R) is false 4) (A) is false but (R) is true 91. The period of simple pendulum on the surface of earth is 'T'. At an attitude of half of the radius of earth from the surface, its period will be $(4)\sqrt{\frac{2}{3}}T$ 2) $\frac{3T}{2}$ $3)\frac{2T}{3}$ A rocket is launched vertically from the surface of the earth of radius 'R' with an initial speed v. If 92. atmospheric resistance is neglected, the maximum height attained by the rocket is given by 1) h = $\frac{R}{\left(\frac{2gR}{2} - 1\right)}$ 2) h = $\frac{R}{\left(\frac{2gR}{2} + 1\right)}$ 3) $h = R \left(\frac{2gR}{v^2} - 1 \right)$ 93. One large soap bubble of diameter D breakes into 27 bubbles having surface tension T. The change in surface potential energy is 1) $2\pi TD^2$ 3) πTD² 4) $8\pi TD^2$ 2) $4\pi TD^2$ 94. If there were no gravity, which of the following will not be associated for a fluid? 1)Viscosity 2) Surface tension 3) Pressure 4) Archimedes' upward thrust 95. A uniform solid brass sphere is rotating with an angular speed $\omega 0$ about a diameter. If its temperature is now increased by 100°C then its new angular speed will be $(\alpha_{\rm B} = 2 \times 10^{-5} / {\rm ^{\circ}C})$ 1) 1.1 ω_0 2) 1.01 ω_0 3) 0.996 ω₀ 4) 0.824 ω_0 www.eenadupratibha.net

96.	Read the following.			
	A) Radius of curvature of	of Bimetallic strip is inver	rsely proportional to Δt .	
	B) Water has maximum	density & minimum volu	me at 4°C.	
	C) If the pressure at triple	e point is kept constant an	d temperature increases th	en only vapour state exists.
	D) For a cooking pot, sp	ecific heat is low and the	rmal conductivity is high.	
	1) ABCD are false		2) ABCD are true	
	3) Only AC are true		4) Only B & D are true	<u>ð.</u>
97.	Two tanks A and B cont must be taken from each	ain water at 30°C and 80 tank to prepare 40 kg of	°C respectively. Calculate water at	e the amount of water that
	$50^{\circ}C (S_{W} = 1 \text{ calg}^{-1}^{\circ}C)$		XX	
	1) 24 kg, 16 kg	2) 20 kg, 20 kg	3) 16 kg, 24 kg	4) 30 kg, 10 kg
98.	Two spherical stars A an	d B emit black body radi	ation. The radius of A is 4	00 times that of B and A
	emits 10 ⁴ times the pow	er emitted from B. The ra	atio $\left(\frac{\lambda_{\rm A}}{\lambda_{\rm B}}\right)$ of their wavelen	gth λ_A and λ_B at which
	the peaks occur in their i	respective radiation curve	es is	
	1) 3 : 2	2) 2 : 1	3) 5 : 4	4) 1 : 2
99.	An ideal gas in addition then the gas behaves as	to other gas laws, also ob	eys a law $P \propto T^3$ and unde	ergoes an adiabatic change,
	1) mono atomic		2) di atomic	0
<	3) mixture of mono and	diatomic	4) mixture of mono and	l polyatomic
100.	If oxygen has root mean	square velocity of C m/s	then root mean square ve	locity of Hydrogen will be
	1) C m/s	2) $\frac{C}{2}$ m/s	3) 4C m/s	4) $\frac{C}{4}$ m/s
101.	A tuning fork produces a	wave of wavelength 110	cm in air at 0°C. The wa	velength at 25°C would be
	1) 110 cm	2) 115 cm	3) 120 cm	4) 130 cm
102.	A locomotive engine app on the platform observes is 330 m/s, the speed of	proaches a platform and w a change of 40 Hz as the engine is	whistles at a frequency 400 engine passes across him) Hz. A stationary observer . If velocity of sound in air
	1) 33 m/s	2) 18 m/s	3) 16.5 m/s	4) 24 m/s
103.	For a concave mirror, if	virtual images formed, t	he graph between magnif	ication (m) and u is of the
	form			
		$\uparrow f$	\uparrow_m	\uparrow_m
	1) "	2)	3)	4)
		$1 \downarrow \downarrow \qquad $		
		, u	$u \longrightarrow$	u→
104.	One of the refracting sur	faces of a prism of angle a ractive index of the mater	30° is silvered. A ray of lig	ght incident at an angle 60°
		2) <u>7</u>	3	
	1) √ 2	2) √ 3	$(3) \frac{1}{2}$	4) 2.0
				_

105. An astronomical telescope has an angular magnification of magnitude 5 for distant objects. The separation between the objective and the eye piece is 36 cm and the final image is formed at infinity. The focal length f_0 of the objective and the focal length f_e of the eye piece are 1) $f_0 = 45 \text{ cm}, f_e = -9 \text{ cm}$ 2) $f_0 = 7.2$ cm, $f_e = 5$ cm 4) $f_0 = 30$ cm, $f_e = 6$ cm 3) $f_0 = 50$ cm, $f_e = 10$ cm **106.** The correct one of the following statements is 1) Diffraction cannot take place without interference of light waves. 2) Interference will not take place with out diffraction of light waves. 3) Interference and diffraction are the result of polarization of light waves. 4) The fringe width in Young's double slit experiment does not depends on the wave length of light used. 107. Three charges 2q, -q, and -q are located at the vertices of an equilateral triangle. At the centroid (E = Intensity of electric field, V = electric potential)1) E = 0, V = 02) $E = 0, V \neq 0$ 3) $E \neq 0, V \neq 0$ 4) $E \neq 0$, V = 0108. A parallel plate air capacitor is fully charged and then battery is removed. A dielectric slab is now put between the plates. The correct one of the following statements is 1) The charge on the plates decreases 2) The charge on the plates does not change, but the potential difference increases 3) The charge on the plates does not change, the potential difference between the plates decreases and the energy stored also decreases 4) The charge on the plates does not change, the potential difference between the plates increases and the energy stored also increases 109. The colour code for a resistor of resistance 350 m Ω with 5% tolerance is 1) Orange, Green, Yellow, Gold 2) Orange, Green, Gold, Gold 3) Orange, Green, Red, Gold 4) Orange, Green, Silver, Gold 110. In a potentiometer experiment for measuring the e.m.f. of a cell, the null point is at 480 cm when we have a 400 Ω resistor in series with the cell and galvanometer. If the series resistance is reduced to half, the null point will be at 2) 240 cm 3) 480 cm 1) 120 cm 4) 600 cm **111.** A square current carrying loop is suspended in uniform magnetic field acting in the plane of the loop. If the force on one arm of the loop is F, the net force on the remaining three arms of the loop is 3) –3F 2) –F 4) F 1) zero **112.** If the number of turns of uniform wire used in moving coil galvanometer is doubled then (A) Current sensitivity is doubled B) Voltage sensitivity remains same 1) Both A and B are true 2) Only A is true 3) Only B is true 4) Neither A not B is true

113. The network shown in figure, is a part of a complete circuit. The potential difference $V_B - V_A$, when the current is 5 A and is decreasing at a rate of 10^3 A/ s is

www.eenadupratibha.net

3) 21.50 eV

4) 5.80 eV

2) 15.70 eV

1) 27.90 eV

123. The first ionisation enthalpies of Carbon, Nitrogen and Oxygen respectively are (in eV) 1) 11.3, 13.6, 14.5 2) 13.6, 11.3, 14.5 3) 14.5, 13.6, 11.3 4) 11.3, 14.5, 13.6 124. If Na⁺ ion is larger than Mg²⁺ ion and ion is larger than Cl^{-} ion, which one of the following is least soluble in water? 3) MgC l_2 4) MgS 1) NaCl 2) Na₂S 125. Which one of the following pairs is diamagnetic? 3) O_2^{-2} , N 1) B_2, O_2^+ 2) C₂, O₂ **126.** Select the true statement about a real gas at high pressure and low temperature. 1) The pressure exerted is greater than ideal gas. 2) Molecular volumes are very much negligible in comparision with the volume of the container. 3) Volume occupied by real gas is less than that of ideal gas. 4) Compressibility factor is equal to one. 127. Which of the following statements regarding noble gases is not correct: 1) All noble gases are monoatomic gases. 2) The inactive nature of noble gases is ascribed to their closed shell structures. 3) Noble gases exhibit low ionisation enthalphy values. 4) Noble gases have very low melting and boiling points. 128. $xI^- + yIO_3^- zH^+ \rightarrow I_2H_2O$ the coefficients x, y, z in the balanced redox reaction respectively 1) 1, 1, 6 2) 1, 5, 6 3) 1, 3, 6 4) 5, 1, 6 129. The molar heat capacity of water is 75 $JK^{-1}mol^{-1}$. What is the amount of heat required to raise the temperature of 100 g of water from 300 to 302.4 K? 1) 10 J 4) 10 kJ 2) 1000 J 3) 375 J 💊 130. When one mole of I_2 is introduced into a 1 L vessel at 1200°C, 5% of it dissociated into iodine atoms. What is the value of the equilibrium constant for the reaction $I_2(g) \Longrightarrow 2I(g)$ at 1200°C? 2) 1.05×10^{-2} 3) 1.05×10^{-1} 1) 1.05×10^{-3} 4) 1.05 131. The % of dissociation of 0.05M NH₄ OH at 25°C in a solution of pH = 11. 1)22) 3 3) 4 4) 1 132. When equal volumes of the following solutions are mixed, precipitation of AgCl $(K_{SP} = 1.8 \times 10^{-10})$ will occur only with, 1) 10^{-4} M Ag⁺ and 10^{-4} M Cl⁻ 2) 10^{-5} M Ag⁺ and 10^{-5} M Cl⁻ 3) 10^{-6} M Ag⁺ and 10^{-6} M Cl⁻ 4) 10^{-10} M Ag⁺ and 10^{-10} M Cl⁻ 133. Which of the following is the coal gasification reaction? 1) C (s) + H₂O (g) \rightarrow CO (g) + H₂ (g) 2) CO(g) H₂O(g) \rightarrow CO2 (g) + H₂ (g) 3) $C(s) + 2H_2O(g) \rightarrow CH_4(g) + O_2(g)$ 4) C + CO₂ \rightarrow 2CO

134. The correct statement is.... 1) alkali metals exist in free state in nature net 2) K has higher density than Na 3) excited alkali metals emit radiation in the visible region 4) the harder lithium sinks when thrown into water 135. Match the following List – I List – II **Diboranae reacts with Products formed** I) $BCl_3 + HCl$ A) H_2O B) KOH II) $B_2O_3 + H_2O$ III) $H_3BO_3 + H_2$ C) Cl_2 IV) $\text{KBO}_2 + \text{H}_2$ D) O_2 The correct match is 1) A-III, B-IV, C-I, D-II 2) A-IV, B-III, C-I, D-II 3) A-III, B-II, C-I, D-IV 4) A-I, B-III, C-II, D-IV 136. Assertion (A): Excess amount of CO_2 in air is responsible for green house effect. **Reason** (**R**): CO₂ is largely produced in respiratory functions. 1) Both (A) and (R) are true and (R) is the correct explanation of (A). 19.2 2) Both (A) and (R) are true and (R) is not the correct explanation of (A). 3) (A) is true but (R) is false. 4) (A) is false but (R) is true. 17 **137.** IUPAC name of the compound is..... C_2H_5 $H_{3}C - (CH_{2})_{4} - CH - CH - CH_{2} - CH_{2} - CH_{2} - CH_{3}$ 1) 4 - ethyl - 4, 5 – dimethyldecane 2) 3, 4 - dimethyl - 3 – propylnonane 3) 6, 7 - dimethyl - 7 ethyldecane 4) 6, 7 - dimethyl - 7 - propylnonane 138. Boiling point of glycerol is 563 K, but decomposes below its boiling temperature. Therefore best method to purify it is 1) simple distillation 2) distillation under reduced pressure 3) steam distillation 4) simple vapourisation

139.	Methane on heating in air at high pressure in the presence of copper as catalyst gives				
	1) HCHO	2) CH ₃ COOH	3) CH ₃ OH	4) Carbon black	
140.	In the following reaction	$X \xrightarrow{Ozonolysis}$ dial an	d Y $\frac{Baeyer 's}{Reagent}$ diol; X, Y	are	
	1) C_2H_6 , C_2H_6		2) C_2H_4 , C_3H_6	200	
	3) C_2H_2 , C_2H_4		4) C_2H_6, C_6H_6		
141.	The characteristic axial of	listances and their angles	for orthorhombic crystal	sytem are	
	1) $a = b = c$, $\alpha = \beta = \gamma =$	90°			
	2) a \neq b \neq c , $\alpha = \beta = \gamma =$	= 90°			
	3) a \neq b \neq c , $\alpha \neq \beta \neq \gamma$				
	4) $a = b = c, \alpha = \beta = \gamma \neq$	90°	0.		
142.	The lowering of vapour 373 K is 1.013×10^3 N.	pressure of a solution cc m ⁻² . The molecular weig	ntaining 15 g of non elec ght of the solute is nearly	trolyte in 90 g of water at	
	1) 300 g mo <i>l</i> e ⁻¹	2) 90 g mo <i>l</i> e ⁻¹	3) 150 g mole ⁻¹	4) 135 g mo <i>l</i> e ⁻¹	
143.	The osmotic pressure of of urea. Then the concen	aqueous solution of K ₃ [tration of K ₃ [Fe(CN) ₆]	$Fe(CN)_6$] is same as that is	of 0.4 M aqueous solution	
	1) 0.4 M	2) 0.1M	3) 0.2 M	4) 0.8 M	
144.	The time required for c	omplete decomposition	of 2 moles of water using	g 8 amperes of current in	
	seconds is $1)$ 4.825 $\times 10^4$		$2) 0.650 + 10^4$		
	$\begin{array}{c} 1) 4.825 \times 10^{12} \\ 3) 10 300 \times 10^{4} \end{array}$		$\frac{2}{9.030} \times 10^{4}$	11	
145	The standard reduction	potential of 7n Ni and	Fe electrodes $= 0.76$ V	-0.23 V and -0.44 V	
1 101	respectively.	potential of Zil, 101 and	i concursars and i		
	The reaction $x + y^{2+} \rightarrow$	$x^{2+} + y$ is not spontaneous	us when		
	1) $x = Fe, y = Ni$		2) $x = Ni, y = Fe$		
	3) $x = Zn, y = Fe$	~	4) $x = Zn, y = Ni$		
146.	For a first order reaction $L^{-1}S^{-1}$. The half life of t	$A \rightarrow B$, when concentrative reaction is	tion A is 0.01 M the rate is	s found to be 2×10^{-5} mol	
	1) 200 s	2) 400 s	3) 436.5 s	4) 346.5 s	
147.	Which one the following	colloids is negatively ch	arged colloid?		
	1) As ₂ S ₃	2) TiO ₂ so <i>l</i>	3) $Al_2O_3 ext{ xH}_2O$	4) $Fe_2O_3 xH_2O$	
148.	The slag obtained during	the extraction of copper	from copper pyrites is con	mposed mainly of	
	1) CaSiO ₃	2) FeSiO ₃	3) CuSiO ₃	4) SiO ₂	
149.	Which of the following s	statement is not correct?			
	1) Basic character of hyd	lrides of group 15 elemen	nts decreases from NH_3 to	BiH ₃	
	2) NO_2 is the only oxide	of nitrogen which dimen	rises		
	3) Being small is size nit	rogen is highly reactive a	at ordinary temperature		
	4) White phosphorous is	more reactive than red p	hosphorous		

		-	
150.	Which of the following statements regarding C	Dzone is not correct?	
	1) Ozone is a bent molecule		
	2) Ozone is a good oxidising aagent		
	3) Decomeposition of Ozone is endothremic		
	4) Ozone is diamagnetic in nature		20
151.	Which of the following reactions is feasible?		
	1) $\operatorname{Br}_2 + 2 \operatorname{Cl}^- \rightarrow 2 \operatorname{Br}^- + \operatorname{Cl}_2$	$2) \operatorname{Cl}_2 + 2 \operatorname{F}^- \to 2 \operatorname{Cl}^-$	+ F ₂
	3) $Cl_2 + 2 Br^- \rightarrow 2 Cl^- + Br_2$	4) $Cl_2 + 2 Br^- \rightarrow 2 I^-$	+ Br ₂
152.	Which of the following groups of cations conta	in two unpaired electrons asso	ociated with each of them?
	1) Ti^{2+} , V^{3+} , Cr^{4+} , Mn^{5+}	2) Ti^{4+} , V^{3+} , Cr^{2+} , Mn	3+
	3) Ti^{3+} , V^{2+} , Cr^{3+} , Mn^{4+}	4) Ti^+ , V^{4+} , Cr^{3+} , Mn^2	+
153.	The incorrect statement in the following is		
	1) La $(OH)_3$ is less basic than Lu $(OH)_3$	•	
	2) In the lanthanoid series the size of $Lu^{3+}dect$	reases as atomic number incre	eases
	3) Zr and Hf have similar size because of lanth	nanide contraction	
	4) Lanthanum belongs to 'd' block		
154.	Which of the Polymers is formed by step grow	th polymerization?	
	1) Nylon 6, 62) Polythene	3) PVC	4) Polystyrene
155.	The incorrect statement about sucrose is		~~~~
	1) A disaccharide of monomer units glucose ar	nd fructose	
	2) C – 1 of α – glucose and C – 2 of β – fruc	tose form glycosidic linkage	0.
	3) Its hydrolysed product has same type of opt	ical rotation (dextro) as that o	of sucrose
	4) A non – reducing sugar	+ 2.1	
156.	4) A non – reducing sugarWhich element is not present in Saccharin, an	artificial sweetener?	
156.	 4) A non – reducing sugar Which element is not present in Saccharin, an 1) C 2) N 	artificial sweetener? 3) S	4) P
156. 157.	4) A non – reducing sugar Which element is not present in Saccharin, an 1) C 2) N $CH_3 - CH_2 - CH_2 - CH - CH_3 + alc$ KOH	artificial sweetener? 3) S $\rightarrow X + Y; X, Y \text{ are:}$	4) P
156. 157.	4) A non – reducing sugar Which element is not present in Saccharin, an 1) C 2) N $CH_3 - CH_2 - CH_2 - CH - CH_3 + alc KOH$ Br	artificial sweetener? 3) S \rightarrow X + Y; X, Y are: major minor	4) P
156. 157.	 4) A non – reducing sugar Which element is not present in Saccharin, an 1) C 2) N CH₃ – CH₂ – CH₂ – CH – CH₃ + alc KOH Br 1) Pent – 1 – ene, Pent – 2 – ene 	artificial sweetener? 3) S \rightarrow X + Y; X, Y are: <i>major minor</i> 2) Pent - 2 ene, Pent -	4) P 1 – ene
156. 157.	4) A non – reducing sugar Which element is not present in Saccharin, an 1) C 2) N $CH_3 - CH_2 - CH_2 - CH - CH_3 + alc KOH$ Br 1) Pent – 1 – ene, Pent – 2 – ene 3) Pentan – 1 – ol, Pentan – 2 – ol	 artificial sweetener? 3) S → X + Y; X, Y are: major minor 2) Pent - 2 ene, Pent - 4) Pentan - 2 - ol, Pent 	4) P 1 − ene tan − 1 − o <i>l</i>
156. 157.	4) A non – reducing sugar Which element is not present in Saccharin, an 1) C 2) N $CH_3 - CH_2 - CH_2 - CH - CH_3 + alc KOH$ Br 1) Pent – 1 – ene, Pent – 2 – ene 3) Pentan – 1 – ol, Pentan – 2 – ol Na	artificial sweetener? 3) S $\rightarrow X + Y; X, Y \text{ are:}$ <i>major minor</i> 2) Pent - 2 ene, Pent - 4) Pentan - 2 - ol, Pen	4) P 1 – ene tan – 1 – o <i>l</i>
156.	4) A non – reducing sugar Which element is not present in Saccharin, an 1) C 2) N $CH_3 - CH_2 - CH_2 - CH - CH_3 + alc KOH$ Br 1) Pent – 1 – ene, Pent – 2 – ene 3) Pentan – 1 – ol, Pentan – 2 – ol Na (X)	 artificial sweetener? 3) S → X + Y; X, Y are: major minor 2) Pent - 2 ene, Pent - 4) Pentan - 2 - ol, Pen 	4) P 1 – ene tan – 1 – o <i>l</i>
156. 157. 158.	4) A non – reducing sugar Which element is not present in Saccharin, an 1) C 2) N CH ₃ – CH ₂ – CH ₂ – CH – CH ₃ + alc KOH $ _{Br}$ 1) Pent – 1 – ene, Pent – 2 – ene 3) Pentan – 1 – ol, Pentan – 2 – ol Na CH ₃ – CH ₂ – OH – $\boxed{PBr_3}(X) + (Y) \rightarrow$	 artificial sweetener? 3) S → X + Y; X, Y are: major minor 2) Pent - 2 ene, Pent - 4) Pentan - 2 - ol, Pen • (Z); Z is 	4) P 1 – ene tan – 1 – o <i>l</i>
156. 157. 158.	4) A non – reducing sugar Which element is not present in Saccharin, an 1) C 2) N CH ₃ – CH ₂ – CH ₂ – CH – CH ₃ + alc KOH $ _{Br}$ 1) Pent – 1 – ene, Pent – 2 – ene 3) Pentan – 1 – ol, Pentan – 2 – ol Na CH ₃ – CH ₂ – OH – $\boxed{PBr_3}(X)$ (X) + (Y) \rightarrow 1) H ₃ C – CH ₂ – Br	 artificial sweetener? 3) S → X + Y; X, Y are: major minor 2) Pent - 2 ene, Pent - 4) Pentan - 2 - ol, Pen • (Z); Z is 2) H₃C - CH₂ - ONa 	4) P 1 – ene tan – 1 – o <i>l</i>
156. 157. 158.	4) A non – reducing sugar Which element is not present in Saccharin, an 1) C 2) N CH ₃ – CH ₂ – CH ₂ – CH – CH ₃ + alc KOH $ _{Br}$ 1) Pent – 1 – ene, Pent – 2 – ene 3) Pentan – 1 – ol, Pentan – 2 – ol Na CH ₃ – CH ₂ – OH – $\boxed{PBr_3}(X)$ (X) + (Y) \rightarrow 1) H ₃ C – CH ₂ – Br 3) H ₃ C – O – CH ₂ – CH ₃	 artificial sweetener? 3) S → X + Y; X, Y are: major minor 2) Pent - 2 ene, Pent - 4) Pentan - 2 - ol, Pen • (Z); Z is 2) H₃C - CH₂ - ONa 4) H₃C - CH₂ - O - CI 	4) P 1 – ene tan – 1 – o <i>l</i> H ₂ – CH ₃
 156. 157. 158. 159. 	4) A non – reducing sugar Which element is not present in Saccharin, an 1) C 2) N CH ₃ – CH ₂ – CH ₂ – CH – CH ₃ + alc KOH \downarrow_{Br} 1) Pent – 1 – ene, Pent – 2 – ene 3) Pentan – 1 – ol, Pentan – 2 – ol Na CH ₃ – CH ₂ – OH – $\bigvee_{PBr_3}^{(X)}(X) + (Y) \rightarrow$ 1) H ₃ C – CH ₂ – Br 3) H ₃ C – O – CH ₂ – CH ₃ Cannizzaro reaction is not given by	artificial sweetener? 3) S $\rightarrow X + Y; X, Y \text{ are:}$ major minor 2) Pent - 2 ene, Pent - 4) Pentan - 2 - ol, Pen (Z); Z is 2) H ₃ C - CH ₂ - ONa 4) H ₃ C - CH ₂ - O - CH	4) P 1 – ene tan – 1 – o <i>l</i> H ₂ – CH ₃
 156. 157. 158. 159. 	4) A non – reducing sugar Which element is not present in Saccharin, an 1) C 2) N $CH_3 - CH_2 - CH_2 - CH - CH_3 + alc KOH$ Br 1) Pent – 1 – ene, Pent – 2 – ene 3) Pentan – 1 – ol, Pentan – 2 – ol Na $CH_3 - CH_2 - OH - PBr_3 (X) (X) + (Y) \rightarrow$ 1) $H_3C - CH_2 - Br$ 3) $H_3C - O - CH_2 - CH_3$ Cannizzaro reaction is not given by 1) CH_3CHO 2) PhCHO	artificial sweetener? 3) S $\rightarrow X + Y; X, Y \text{ are:}$ major minor 2) Pent - 2 ene, Pent - 4) Pentan - 2 - ol, Pent • (Z); Z is 2) H ₃ C - CH ₂ - ONa 4) H ₃ C - CH ₂ - O - Cl 3) HCHO	 4) P 1 - ene tan - 1 - ol H₂ - CH₃ 4) (CH₃)₃ CCHO

160. Which one of the following is a Gatterman's reaction?

1)
$$C_6 H_5 \overset{+}{N_2 X} \xrightarrow{Cu_2 Br_2} C_6 H_5 Br$$

2) $C_6 H_5 \overset{+}{N_2 X} \xrightarrow{\overline{X}} \xrightarrow{KI} C_6 H_5 I$
3) $C_6 H_5 \overset{+}{N_2 X} \xrightarrow{\overline{X}} \xrightarrow{Cu \text{ powder}} C_6 H_5 Br$
4) $C_6 H_5 \overset{+}{N_2 X} \xrightarrow{\overline{X}} \xrightarrow{C_2 H_5 OH} C_6 H_5 Br$

KEY

bug. net

1-1; 2-1; 3-2; 4-3; 5-4; 6-3; 7-3; 8-3; 9-3; 10-3; 11-1; 12-2; 13-2; 14-1; 15-1; 16-2; 17-1; 18-2; 19-3; 20-3; 21-4; 22-1; 23-3; 24-3; 25-2; 26-2; 27-1; 28-1; 29-3; 30-1; 31-3; 32-4; 33-3; 34-2; 35-1; 36-2; 37-2; 38-1; 39-3; 40-3; 41-4; 42-2; 43-1; 44-3; 45-3; 46-2; 47-3; 48-1; 49-4; 50-3; 51-3; 52-2.; 53-3; 54-1; 55-3; 56-3; 57-3; 58-1; 59-4; 60-3; 61-3; 62-3; 63-2; 64-4; 65-2; 66-3; 67-4; 68-4; 69-4; 70-2; 71-3; 72-4; 73-3; 74-3; 75-1; 76-2; 77-1; 78-1; 79-2; 80-1; 81-4; 82-4; 83-2; 84-1; 85-2; 86-4; 87-1; 88-4; 89-2; 90-2; 91-2; 92-1; 93-2; 94-4; 95-3; 96-2; 97-1; 98-2; 99-3; 100-3; 101-2; 102-3; 103-2; 104-2; 105-4; 106-1; 107-4; 108-3; 109-4; 110-3; 111-2; 112-1; 113-3; 114-4; 115-2; 116-3; 117-2; 118-4; 119-4; 120-4; 121-3; 122-2; 123-4; (138 (152-1; 153) (ison) (ison 124-4.; 125-3; 126-3; 127-3; 128-4; 129-2; 130-2; 131-1; 132-1; 133-1; 134-3; 135-1; 136-2; 137-1; 138-2; 139-3; 140-3; 141-2; 142-1; 143-2; 144-1; 145-2; 146-4; 147-1; 148-4; 149-3; 150-3; 151-3; 152-1; 153-1;